Projective Modules and Involutions

نویسنده

  • JOHN MURRAY
چکیده

Let G be a finite group, and let Ω := {t ∈ G | t = 1}. Then Ω is a G-set under conjugation. Let k be an algebraically closed field of characteristic 2. It is shown that each projective indecomposable summand of the G-permutation module kΩ is irreducible and self-dual, whence it belongs to a real 2-block of defect zero. This, together with the fact that each irreducible kG-module that belongs to a real 2-block of defect zero occurs with multiplicity 1 as a direct summand of kΩ, establishes a bijection between the projective components of kΩ and the real 2-blocks of G of defect zero. Let G be a finite group, with identity element e, and let Ω := {t ∈ G | t = e}. Then Ω is a G-set under conjugation. In this note we describe the projective components of the permutation module kΩ, where k is an algebraically closed field of characteristic 2. By a projective component we mean an indecomposable direct summand of kΩ that is also a direct summand of a free kG-module. We show that all such components are irreducible, self-dual and occur with multiplicity 1. This gives an alternative proof of Remark (2) on p. 254 of [5], and strengthens Corollaries 3 through 7 of that paper. In addition, we can give the following quick proof of Proposition 8 in [5]: Corollary 1. Suppose that H is a strongly embedded subgroup of G. Then kH↑ G ∼= kG⊕[⊕ s i=1Pi] where s ≥ 0 and the Pi are pairwise nonisomorphic self-dual projective irreducible kG-modules. Proof. That H is strongly embedded means that |H | is even and |H ∩H| is odd, for each g ∈ G\H . Let t ∈ H be an involution. Then clearly CG(t) ≤ H . So kH↑ G is isomorphic to a submodule of (kCG(t))↑ . Mackey’s theorem implies that every component of kH↑ , other than kG, is a projective kG-module. Being projective, these modules must be components of (kCG(t))↑ . The result now follows from Theorem 8. Consider the wreath product G ≀ Σ of G with a cyclic group Σ of order 2. Here Σ is generated by an involution σ and G ≀Σ is isomorphic to the semidirect product of the base group G×G by Σ. The conjugation action of σ on G ×G is given by (g1, g2) σ = (g2, g1), for all g1, g2 ∈ G. The elements of G ≀Σ will be written (g1, g2), (g1, g2)σ or σ. We shall exploit the fact that kG is a kG ≀Σ-module. For, as is well-known, kG is an k(G×G)-module via: x · (g1, g2) := g −1 1 xg2, for each x ∈ kG, and g1, g2 ∈ G. The action of Σ on kG is induced by the permutation action of σ on the Date: March 11, 2004. 1991 Mathematics Subject Classification. 20C20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON PROJECTIVE L- MODULES

The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...

متن کامل

On two generalizations of semi-projective modules: SGQ-projective and $pi$-semi-projective

Let $R$ be a ring and $M$ a right $R$-module with $S=End_R(M)$. A module $M$ is called semi-projective if for any epimorphism $f:Mrightarrow N$, where $N$ is a submodule of $M$, and for any homomorphism $g: Mrightarrow N$, there exists $h:Mrightarrow M$ such that $fh=g$. In this paper, we study SGQ-projective and $pi$-semi-projective modules as two generalizations of semi-projective modules. A ...

متن کامل

Complexes of $C$-projective modules

Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule $C$, $C$--perfect complexes have the ability to detect when a ring is strongly regular.It is shown that there exists a class of modules which admit minimal resolutions of $C$--projective modules.

متن کامل

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

Free Extended BCK-Module

In this paper, by considering the notion of extended BCK-module, we define the concepts of free extended BCK-module, free object in category of extended BCK-modules and we state and prove some related results. Specially, we define the notion of idempotent extended BCK-module and we get some important results in free extended BCK-modules. In particular, in category of idempotent extended BCK-mod...

متن کامل

$n$-cocoherent rings‎, ‎$n$-cosemihereditary rings and $n$-V-rings

 Let $R$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎A right $R$-module $M$ is called $(n‎, ‎d)$-projective if $Ext^{d+1}_R(M‎, ‎A)=0$ for every $n$-copresented right $R$-module $A$‎. ‎$R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $R$-module is $(n‎, ‎d)$-projective‎. ‎$R$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004